



# **Groundwater-dependent Ecosystem Baseline BioCondition Assessment**

## **Futura Resources – Fairhill Coal Project**

---

## TABLE OF CONTENTS

|                         |   |
|-------------------------|---|
| EXECUTIVE SUMMARY.....  | 3 |
| 1 BACKGROUND.....       | 4 |
| 2 METHODS.....          | 4 |
| 3 RESULTS .....         | 7 |
| 4 RECOMMENDATIONS ..... | 8 |
| 5 REFERENCES.....       | 9 |

## LIST OF TABLES

|                                                                                                         |   |
|---------------------------------------------------------------------------------------------------------|---|
| Table 2-1. Survey locations .....                                                                       | 4 |
| Table 2-2. Published benchmarks adopted for calculating BioCondition at the Fairhill Coal Project ..... | 7 |
| Table 3-1. BioCondition scores for each survey site.....                                                | 8 |

## LIST OF FIGURES

|                                                |   |
|------------------------------------------------|---|
| Figure 2-1 Locations of monitoring sites ..... | 6 |
|------------------------------------------------|---|

## APPENDICES

|                  |   |
|------------------|---|
| A APPENDIX.....  | A |
| B APPENDIX ..... | B |

## EXECUTIVE SUMMARY

The Fairhill Coal Project, a small mine near Emerald, Queensland, operates in accordance with a Groundwater-dependent Ecosystems Management Plan. A commitment of this plan is that baseline BioCondition monitoring of groundwater-dependent ecosystems is undertaken in the first September-October after the commencement of construction. A field survey was conducted by ecologists from MEC Mining Group Pty Ltd, on 8-9 October 2025 to meet this obligation.

Four “impact sites” (within a zone of potential groundwater drawdown) and four “control sites” (outside the zone of potential drawdown but in similar ecosystems to the impact sites) were surveyed. The impact sites and control sites possessed very similar baseline BioCondition scores (mean of 43.3 versus 43.8 out of 80, respectively), indicating that the control sites are an appropriate reference for the impact sites.

The following actions are recommended based on results from the baseline surveys:

1. The Groundwater-dependent Ecosystems Management Plan should be revised to:
  - a. list the coordinates of the star pickets that were installed to mark the start and end of each monitoring site.
  - b. change the benchmarks used for assessing BioCondition from regional ecosystem 11.3.25 to regional ecosystems 11.3.1, 11.3.2 and 11.3.6, to better accord with the vegetation types present at the monitoring sites.
2. The baseline data presented in this report is to be used to track changes in BioCondition at impact and control sites over subsequent years.

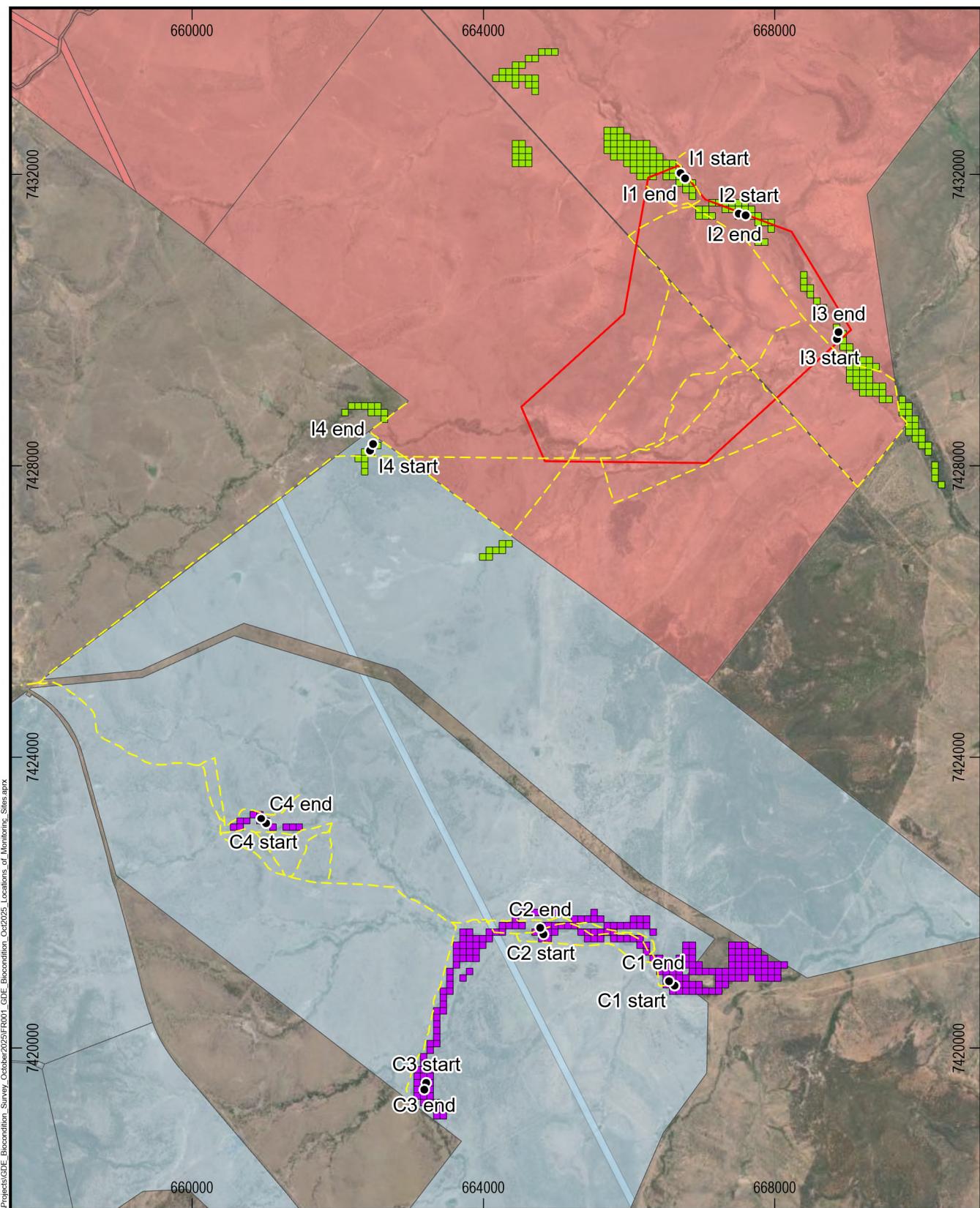
## 1 BACKGROUND

Futura Resources Ltd (Futura) recently commenced the Fairhill Coal Project, a small coal mine located north-east of Emerald, in the Bowen Basin of Queensland. Approval of the project was granted in 2024 on the condition that groundwater-dependent ecosystems along Cooroora Creek and Sandy Creek maintain their extent and BioCondition (environmental authority BRID0071 condition D2). To achieve these commitments, Futura operates the Fairhill Coal Project in accordance with a Groundwater-dependent Ecosystems Management Plan.

The Groundwater-dependent Ecosystems Management Plan specifies that baseline BioCondition surveys of groundwater-dependent ecosystems are to be undertaken in the first September-October following commencement of construction at the Fairhill Coal Project. MEC Mining Group Pty Ltd was engaged by Futura to complete these baseline surveys on 8-9 October 2025. This report describes the surveys undertaken and presents the baseline condition of four impact sites and four control sites.

## 2 METHODS

Field surveys were completed by ecologists, Dr Chris Wiley and Mark Cachia, with assistance from Futura employee, Wade Vine. Conditions at the time of survey were dry, as was intended by the Groundwater-dependent Ecosystems Management Plan. No rain was recorded at the nearby Talagai weather station (Bureau of Meteorology station 035131) over the two weeks prior to the survey. A total of only 25.6 mm was recorded over the previous two months.


The methodology adopted during field surveys followed the Groundwater-dependent Ecosystems Management Plan. In accordance with section 6.4.2 of this plan, four “impact sites” and four “control sites” were sampled for BioCondition. Impact sites are located in a zone of potential groundwater drawdown, while control sites are located in nearby analogous landscape positions outside the zone of potential groundwater drawdown. Steel star pickets were permanently installed at the start and end points of each BioCondition monitoring site. The precise locations of these start and end points were recorded using GPS and are listed in **Table 2-1**.

**Table 2-1. Survey locations**

| Site | Latitude (start) | Longitude (start) | Latitude (end) | Longitude (end) |
|------|------------------|-------------------|----------------|-----------------|
| C1   | -23.313332       | 148.629534        | -23.312793     | 148.628780      |
| C2   | -23.307160       | 148.611856        | -23.306361     | 148.611401      |
| C3   | -23.325725       | 148.596334        | -23.326566     | 148.596085      |

| Site | Latitude (start) | Longitude (start) | Latitude (end) | Longitude (end) |
|------|------------------|-------------------|----------------|-----------------|
| C4   | -23.293772       | 148.574458        | -23.293148     | 148.573789      |
| I1   | -23.212538       | 148.629109        | -23.213185     | 148.629728      |
| I2   | -23.217490       | 148.636973        | -23.217687     | 148.637902      |
| I3   | -23.232883       | 148.650333        | -23.232033     | 148.650542      |
| I4   | -23.247359       | 148.587856        | -23.246541     | 148.588259      |

At each site, BioCondition was measured across a 100 m × 50 m quadrat in accordance with the *BioCondition Assessment Manual v 2.2* (Eyre et al. 2015). The start and end points are of the midline through each quadrat.



#### Legend

- BioCondition Monitoring Sites
- Access Roads and Tracks
- ML 700043
- Impact Area

Control Area

Cadastre Property Boundaries

Chapman

Comiskey

Fairhill Coal Project

## Locations of Monitoring Sites

0 1 2 3

Kilometers

Scale: 1:76,000 (A4)

4/11/2025

Datum: GDA2020  
Projection: MGA55

FIGURE 2-1



BioCondition scores are calculated based on comparisons with benchmark values published for each regional ecosystem by the Queensland Herbarium. The Groundwater-dependent Ecosystems Management Plan specified that benchmark values for regional ecosystem 11.3.25 were to be used for calculating all BioCondition scores. However, field surveys indicated that this ecosystem was not an appropriate choice, due to this ecosystem being a very minor component (or was absent) at all sampling sites. Instead, for most sites, the benchmarks for regional ecosystem 11.3.1 were used to calculate the BioCondition scores. The exceptions were sites C2 and I4, which matched ecosystems 11.3.6 and 11.3.2, respectively. As the published benchmarks are updated by the Queensland Herbarium periodically as new data is collected, it is important that consistent benchmarks are adopted throughout the life of the Fairhill Coal Project. For this reason, and for future reference, the benchmarks current in October 2025 are shown in **Table 2-2**.

**Table 2-2. Published benchmarks adopted for calculating BioCondition at the Fairhill Coal Project**

| Attribute                                       | Published Benchmarks |           |           |
|-------------------------------------------------|----------------------|-----------|-----------|
|                                                 | RE 11.3.1            | RE 11.3.2 | RE 11.3.6 |
| Recruitment (%)                                 | 100                  | 100       | 100       |
| Non-native plant cover (% of total plant cover) | 0                    | 0         | 0         |
| Tree species richness                           | 4                    | 2         | 4         |
| Shrub species richness                          | 4                    | 2         | 4         |
| Grass species richness                          | 6                    | 9         | 10        |
| Forb/other species richness                     | 10                   | 15        | 15        |
| Emergent canopy height (m)                      | na                   | na        | na        |
| Tree canopy height (m)                          | 15                   | 18        | 15        |
| Tree subcanopy height (m)                       | 7                    | 9         | na        |
| Emergent canopy cover (%)                       | na                   | na        | na        |
| Tree canopy cover (%)                           | 35                   | 37        | 33        |
| Tree subcanopy cover (%)                        | 15                   | 7         | na        |
| Large tree threshold: eucalypts (cm DBH)        | na                   | 44        | 45        |
| Large tree threshold: non-eucalypts (cm DBH)    | 30                   | na        | na        |
| Total number of large eucalypts per hectare     | na                   | 18        | 34        |
| Total number of large non-eucalypts per hectare | 53                   | na        | na        |
| Shrub canopy cover (%)                          | 15                   | 4         | 2         |
| Native perennial grass cover (%)                | 33                   | 26        | 51        |
| Litter ground cover (%)                         | 30                   | 35        | 26        |
| Coarse woody debris (total length in m/ha)      | 1520                 | 281       | 158       |

### 3 RESULTS

Site photos are presented in **Appendix A**. Raw data is presented in **Appendix B**. The BioCondition scores for impact sites were very similar to control sites (mean of 43.3 versus 43.8: **Table 3-1**). All sites have a relatively low score for remnant vegetation, due to the largely non-native ground vegetation (the ground layer at all sites

was dominated by the non-native) and low density of large trees. The similar baseline condition of control sites and impact sites indicates that they are exposed to similar pressures from weeds and grazing. This baseline survey confirms that the control sites are suitable references for monitoring changes in the BioCondition of impact sites due to groundwater extraction over time.

**Table 3-1. BioCondition scores for each survey site**

| Site      | Large Trees | Tree canopy height | Recruitment of dominant canopy species | Tree canopy cover | Shrub layer cover | Coarse woody debris | Native plant richness: trees | Native plant richness: shrubs | Native plant richness: grasses | Native plant richness: other | Non-native plant cover | Native perennial grass cover | Litter cover | TOTAL SITE SCORE |
|-----------|-------------|--------------------|----------------------------------------|-------------------|-------------------|---------------------|------------------------------|-------------------------------|--------------------------------|------------------------------|------------------------|------------------------------|--------------|------------------|
| Max Score | 15          | 5                  | 5                                      | 5                 | 5                 | 5                   | 5                            | 5                             | 5                              | 5                            | 10                     | 5                            | 5            | 80               |
| C1        | 5           | 5                  | 5                                      | 5                 | 3                 | 2                   | 5                            | 5                             | 2.5                            | 5                            | 0                      | 0                            | 3            | 45.5             |
| C2        | 0           | 5                  | 5                                      | 2                 | 0                 | 5                   | 5                            | 5                             | 2.5                            | 5                            | 0                      | 0                            | 5            | 39.5             |
| C3        | 5           | 5                  | 5                                      | 2                 | 0                 | 2                   | 5                            | 5                             | 2.5                            | 5                            | 0                      | 0                            | 3            | 39.5             |
| C4        | 5           | 4                  | 3                                      | 5                 | 5                 | 5                   | 5                            | 5                             | 2.5                            | 5                            | 0                      | 1                            | 3            | 48.5             |
| I1        | 5           | 5                  | 5                                      | 5                 | 0                 | 2                   | 5                            | 2.5                           | 2.5                            | 5                            | 0                      | 0                            | 3            | 40               |
| I2        | 5           | 4                  | 5                                      | 5                 | 0                 | 5                   | 5                            | 5                             | 0                              | 5                            | 0                      | 0                            | 3            | 42               |
| I3        | 5           | 5                  | 5                                      | 5                 | 3                 | 2                   | 5                            | 5                             | 5                              | 5                            | 0                      | 0                            | 3            | 48               |
| I4        | 5           | 5                  | 5                                      | 5                 | 3                 | 2                   | 5                            | 5                             | 2.5                            | 2.5                          | 0                      | 0                            | 5            | 45               |

## 4 RECOMMENDATIONS

The following actions are recommended based on results from the baseline surveys:

1. The Groundwater-dependent Ecosystems Management Plan should be revised to:
  - a. list the coordinates of the star pickets that mark the start and end of each monitoring site.
  - b. change the benchmarks used for assessing BioCondition from regional ecosystem 11.3.25 to regional ecosystems 11.3.1, 11.3.2 and 11.3.6.
2. The baseline data presented in this report is to be used to track changes in BioCondition at impact and control sites over subsequent years.

## 5 REFERENCES

Eyre, T.J., Kelly, A.L, Neldner, V.J., Wilson, B.A., Ferguson, D.J., Laidlaw, M.J. and Franks, A.J. (2015). *BioCondition: A Condition Assessment Framework for Terrestrial Biodiversity in Queensland. Assessment Manual*. Version 2.2. Queensland Herbarium, Department of Science, Information Technology, Innovation and Arts, Brisbane.

## A APPENDIX

### Site photos

**I1 start****I1 end****I2 start****I2 end****I3 start****I3 end**

**I4 start****I4 end****C1 start****C1 end****C2 start****C2 end**

**C3 start****C3 end****C4 start****C4 end**

**B APPENDIX****Raw BioCondition data**

| Site | RE     | Date      | Species Richness |                |        |                 |       |                 |       | Groundcover (%) |                 |                           |              |       |        |                 |      |        |                  |      |      | Total |     |
|------|--------|-----------|------------------|----------------|--------|-----------------|-------|-----------------|-------|-----------------|-----------------|---------------------------|--------------|-------|--------|-----------------|------|--------|------------------|------|------|-------|-----|
|      |        |           | Trees            | Tree_Benchmark | Shrubs | Shrub_Benchmark | Grass | Grass_Benchmark | Forbs | Forbs_Benchmark | Perennial grass | Perennail grass_Benchmark | Annual grass | Forbs | Shrubs | Shrub_benchmark | Weed | Litter | Litter-Benchmark | Bare | Rock | Wood  |     |
| C1   | 11.3.6 | 8/10/2025 | 11               | 4              | 6      | 4               | 4     | 10              | 17    | 15              | 0.8             | 51                        | 0            | 0.8   | 0.2    | 2               | 10   | 74.8   | 26               | 13.2 | 0    | 0.2   | 100 |
| C2   | 11.3.1 | 8/10/2025 | 9                | 4              | 10     | 4               | 3     | 6               | 16    | 10              | 0.8             | 33                        | 0.4          | 1.8   | 0.6    | 15              | 17.6 | 49.4   | 30               | 24.6 | 0    | 4.8   | 100 |
| C3   | 11.3.1 | 8/10/2025 | 6                | 4              | 11     | 4               | 5     | 6               | 18    | 10              | 0.2             | 33                        | 0.6          | 2.6   | 0.2    | 15              | 4.4  | 60.2   | 30               | 31   | 0    | 0.8   | 100 |
| C4   | 11.3.1 | 8/10/2025 | 13               | 4              | 13     | 4               | 2     | 6               | 11    | 10              | 8.2             | 33                        | 0            | 0.6   | 12.2   | 15              | 14   | 61.6   | 30               | 2.8  | 0    | 0.6   | 100 |
| I1   | 11.3.1 | 9/10/2025 | 11               | 4              | 2      | 4               | 3     | 6               | 10    | 10              | 0               | 33                        | 0            | 3.2   | 0      | 15              | 7.8  | 84.8   | 30               | 2.6  | 0    | 1.6   | 100 |
| I2   | 11.3.1 | 9/10/2025 | 12               | 4              | 10     | 4               | 1     | 6               | 9     | 10              | 0               | 33                        | 0            | 0.8   | 0.4    | 15              | 13.8 | 73.6   | 30               | 10.6 | 0    | 0.8   | 100 |
| I3   | 11.3.1 | 9/10/2025 | 7                | 4              | 6      | 4               | 6     | 6               | 10    | 10              | 2.8             | 33                        | 0            | 2.2   | 2      | 15              | 2.2  | 63.4   | 30               | 27.4 | 0    | 0     | 100 |
| I4   | 11.3.2 | 9/10/2025 | 16               | 2              | 16     | 2               | 7     | 9               | 11    | 15              | 1.2             | 26                        | 0            | 0.8   | 0.4    | 4               | 26   | 67     | 35               | 2.8  | 0    | 1.8   | 100 |

| Site      | Large eucalypts (list of circumferences) per 0.5 ha |                  |                        |                     |                           |                   |                         |                      |                            |                 |                            |                               |                          |                                 | Large non-eucalypts (list of circumferences) per 0.5 ha |                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------|-----------------------------------------------------|------------------|------------------------|---------------------|---------------------------|-------------------|-------------------------|----------------------|----------------------------|-----------------|----------------------------|-------------------------------|--------------------------|---------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
|           | Weed cover (% of total plant cover)                 | Canopy Cover (%) | Canopy cover_Benchmark | Subcanopy cover (%) | Subcanopy cover_Benchmark | Canopy height (m) | Canopy height_Benchmark | Subcanopy height (m) | Subcanopy height_Benchmark | Recruitment (%) | Coarse woody debris (m/ha) | Coarse woody debris_Benchmark | Number of large trees/ha | Number of large trees_Benchmark | Large eucalypts (list of circumferences) per 0.5 ha     | Large non-eucalypts (list of circumferences) per 0.5 ha                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>C1</b> | 80                                                  | 17               | 33                     | 21.9                | na                        | 13.8              | 15                      | 8.7                  | na                         | 75              | 420.8                      | 158                           | 2                        | 34                              | 96, 127, <b>167</b>                                     | 122, 77, 93, 69, 77, 87, 67, 74, 90, 99, 74, 80, 117, 68, 95, 71, 69, 74, 64, 95, 105, 64, 66, 64, 65, 75, 88, 82                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>C2</b> | 80                                                  | 4                | 35                     | 12.8                | 15                        | 12.1              | 15                      | 5.9                  | 7                          | 100             | 969.5                      | 1520                          | 0                        | 53                              | 99, 109, 110, 117, 131, 134, 147, 165, 198              | 66, 73, 87, 89, 88, 75, 90, 80, 78, 74                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>C3</b> | 81                                                  | 5.7              | 35                     | 26.3                | 15                        | 15.2              | 15                      | 9.2                  | 7                          | 80              | 556                        | 1520                          | 18                       | 53                              | 133, 134, 160                                           | 85, 70, 70, 87, 72, 74, <b>117</b> , 89, <b>119</b> , 73, 64, <b>104</b> , 58, 75, 77, 67, 78, <b>126</b> , 82, <b>104</b> , <b>109</b> , <b>98</b> , 65, 67, 79, 86, 68, 63, <b>107</b> , 71, 74, 86, <b>116</b>                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>C4</b> | 62                                                  | 22.7             | 35                     | 3.7                 | 15                        | 8.9               | 15                      | 6.5                  | 7                          | 67              | 889.9                      | 1520                          | 16                       | 53                              | 94, 124                                                 | 77, 82, 75, 78, 72, 74, 63, 92, <b>103</b> , 73, <b>108</b> , <b>112</b> , <b>128</b> , 70, <b>100</b> , 84, 82, 66, 67, <b>144</b> , 70, <b>101</b> , 75, 91, 88, 81, 74, 75, 84, 66, 73, 67, <b>134</b> , 85, 83, 69                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>I1</b> | 74                                                  | 38.3             | 35                     | <0.1                | 15                        | 11.8              | 15                      | 6.8                  | 7                          | 80              | 739                        | 1520                          | 26                       | 53                              | 103, 139, 173, 269                                      | 71, 71, 66, <b>136</b> , 64, <b>118</b> , 84, 64, <b>135</b> , 70, <b>95</b> , 70, 75, 73, <b>134</b> , <b>102</b> , 88, 86, 78, 76, 85, <b>118</b> , 81, 92, 66, <b>128</b> , 83, 64, 73, 87, 90, 75, 94, 78, <b>105</b> , <b>96</b> , 68, <b>101</b> , 70, 69, 69, 79, 81, 63, 74, 80, 80, 72, 63, 91, 84, 65, 69, <b>99</b> , 66, 79, <b>128</b> , 87, 79, 71, 70 |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>I2</b> | 94                                                  | 20.3             | 35                     | 26.2                | 15                        | 11.2              | 15                      | 4.5                  | 7                          | 75              | 1053.3                     | 1520                          | 24                       | 53                              | 125, 150, 157, 176, 216                                 | 65, 81, <b>126</b> , <b>108</b> , <b>107</b> , <b>110</b> , 87, <b>102</b> , 69, 80, <b>153</b> , <b>135</b> , 88, <b>123</b> , <b>117</b> , <b>104</b> , <b>95</b> , 91, 78, <b>137</b> , 65, 94, 72                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>I3</b> | 60                                                  | 42.1             | 35                     | 18.2                | 15                        | 11.8              | 15                      | 6.6                  | 7                          | 75              | 154.4                      | 1520                          | 14                       | 53                              | 135, 154, 186, 214, 216, 250                            | <b>101</b> , 82, 78, 80, 76, 75, 81, <b>106</b> , 85, 64, 80, <b>107</b> , 89, <b>114</b> , <b>99</b> , 81, 79, 84, <b>131</b> , <b>103</b> , 90, 77, 65, 69, 70, 81, 63, 93, 81, 68, 86, 82, 84, 74, 72, 70                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>I4</b> | 86                                                  | 31.6             | 37                     | 12.4                | 7                         | 13.7              | 18                      | 9.9                  | 9                          | 100             | 60.4                       | 281                           | 4                        | 18                              | 105, 118, 120, 121, 130, 136, <b>165</b> , <b>207</b>   | 81, 92, 75, 70, 85, 74, 94, 84, 70, 126, 74, 78, 83, 75, 79, 66, 68, 74, 83, 84, 70                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |

**DOCUMENT INFORMATION****DOCUMENT CHANGE CONTROL**

| Version | Details          | Author (s)  | Reviewed by                  | Date       |
|---------|------------------|-------------|------------------------------|------------|
| 01      | Draft for review | Chris Wiley | Dave Moss (MEC)              | 14/11/2025 |
| 02      | Final            | Chris Wiley | Barbara van der Pol (Futura) | 26/11/2025 |

|              |                  |
|--------------|------------------|
| Status       | Final            |
| Version      | 02               |
| Print Date   | 26/11/2025       |
| Job No       | FR001            |
| Distribution | Futura Resources |